Nucleotides

Part LXVII¹)

The 2-Cyanoethyl and (2-Cyanoethoxy)carbonyl Group for Base Protection in Nucleoside and Nucleotide Chemistry

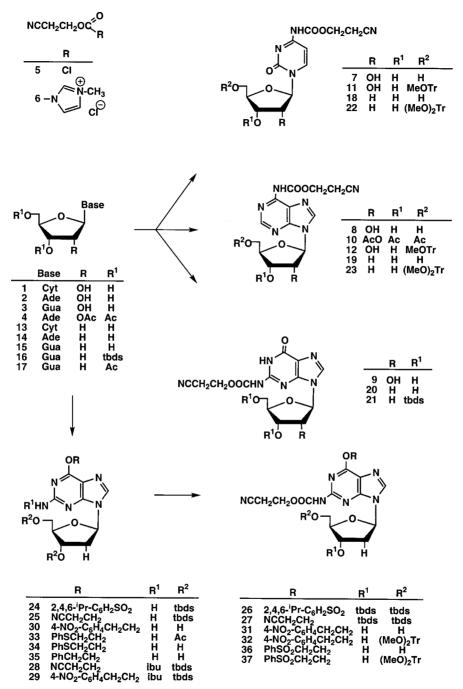
by Claudia Merk, Tilman Reiner, Evgeny Kvasyuk, and Wolfgang Pfleiderer*

Fakultät für Chemie, Universität Konstanz, Postfach 5560, D-78434 Konstanz

The amino functions of the common 2'-deoxyribo- and ribonucleosides were blocked by the (2-cyanoethoxy)carbonyl group on treatment with 2-cyanoethyl carbonochloridate (5) or 1-[(2-cyanoethoxy)carbonyl]-3-methyl-1*H*-imidazolium chloride (6) leading to 7, 18, 8, 19, 9, and 20. In 2'-deoxyguanosine, the amide group was additionally blocked at the O⁶ position by the 2-cyanoethyl (\rightarrow 27) and 2-(4-nitrophenyl)ethyl group (\rightarrow 31, 32). Comparative kinetic studies regarding the cleavage of the ce/ceoc and npe/npeoc group by β -elimination revealed valuable information about the ease and sequential deprotection of the various blocking groups at different sites of the nucleobases. Besides the 5'-O-(dimethoxytrityl)-protected 3'-(2-cyanoethyl diisopropylphosphoramidites) 38 and 39 of N⁴-[(2-cyanoethoxy)carbonyl]-2'-deoxycytidine and N⁶-[(2-cyanoethoxy)carbonyl]-2'-deoxy-O⁶-[2-(4-nitrophenyl)ethyl]guanosine analog 40 is recommended as building block for oligo-2'-deoxyribonucleotide synthesis.

Introduction. – The development of the 2-(4-nitrophenyl)ethyl (npe) and [2-(4-nitrophenyl)ethoxy]carbonyl (npeoc) groups as versatile protective groups for nucleobases [2], phosphate [3][4], and phosphite functions [5][6] broadened the strategy of nucleoside and nucleotide protection in oligonucleotide synthesis universally. The great advantange of these groups is their high stability under acidic and mild basic hydrolytic conditions as, for example, in the presence of ammonia and amines in MeOH, dioxane, or H₂O, whereas their cleavage can easily and quantitatively be achieved by 1,8-diazabicyclo[5.4.0]undecene (DBU) in aprotic solvents by a β -elimination process.

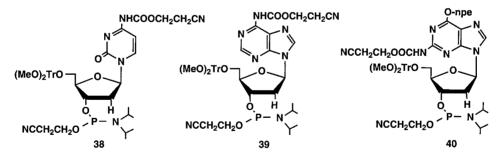
The 2-cyanoethyl (ce) group [7][8] is the most common blocking group for the phosphate and phosphite moiety of nucleotides, but strangely enough, the ce and its corresponding (2-cyanoethoxy)carbonyl (ceoc) group have not been applied for base protection in analogy to the npe/npeoc couple. Several years ago, we [9][10] developed the ce/ceoc strategy as an alternative approach for the synthesis of special oligonucleotides. Details about the nucleobase protection by the ce and ceoc group will now be reported since N-{[(2-cyanoethoxy)carbony]]oxy}succinimide has recently been described as a new reagent for protection of amino groups in oligonucleotides [11]. We protected the amino group in cytidine, adenosine, and guanosine as well as in the corresponding 2'-deoxynucleosides with the ceoc group and utilized the ce group


¹⁾ Part LXVI: [1].

for blocking of the O^6 -function in 2'-deoxyguanosine in order to study its stability regarding DBU cleavage in comparison to the npe and 2-(phenylsulfonyl)ethyl (pse) group.

Synthesis. – The (2-cyanoethoxy)carbonylation reactions were achieved either by 2cyanoethyl carbonochloridate (**5**), which was prepared by an improved synthesis according to *Kondratenko* and *Khaskin* [12] from 3-hydroxypropanenitrile and phosgene, or by 1-[(2-cyanoethoxy)carbonyl]-3-methyl-1*H*-imidazolium chloride (**6**), resulting from **5** and 1-methyl-1*H*-imidazole, in 94% yield. Cytidine (**1**), adenosine (**2**), and guanosine (**3**) were acylated by **5** after transient protection [13] at the sugar moiety by trimethylsilylation to give, after workup, N^4 -[2-(cyanoethoxy)carbonyl]cytidine (**7**) in 68%, N^6 -[(2-cyanoethoxy)carbonyl]adenosine (**8**) in 80%, and N^2 -[(2-cyanoethoxy)carbonyl]guanosine (**9**) in 54% yield (*Scheme*). Also 2',3',5'-tri-*O*-acetyladenosine (**4**) was treated with a mixture of **5** and 1-methyl-1*H*-imidazole in MeCN to give 2',3',5'-tri-*O*-acetyl- N^6 -[(2-cyanoethoxy)carbonyl]adenosine (**10**) in 90% isolated yield. Monomethoxytritylation of **7** and **8** worked also very well yielding the corresponding 5'-*O*-(monomethoxytrityl) derivatives **11** and **12**.

In the 2'-deoxyribonucleoside series, transient protection of the sugar moiety of 2'deoxycytidine (13) was not necessary due to the high nucleophilicity of its amino group, forming, under otherwise analogous conditions, N^4 -[(2-cyanoethoxy)carbonyl]-2'deoxycytidine (18) in a highly selective reaction in 79% yield. The 2'-deoxyadenosine (14) reacted, after transient silylation, to N^6 -[(2-cyanoethoxy)carbonyl]-2'-deoxyadenosine (19), whereas 2'-deoxyguanosine (15) expectedly caused problems for solubility reasons, to give only 19% of N^2 -[2-(cyanoethoxy)carbonyl]-2'-deoxyguanosine (20), and starting from 3',5'-bis-O-[(*tert*-butyl)dimethylsilyl)]-2'-deoxyguanosine (16), to form 21 in 22% yield. Monotritylation of 18 and 19 gave the 5'-protected derivatives 22 and 23, respectively.


The direct introduction of the 2-cyanoethyl group onto O^6 of **15** by a *Mitsunobu* reaction starting from 16 or from its N^2 -isobutyryl- and N^2 -(dimethoxytrityl) derivative was unsuccessful because elimination of acrylonitrile from the intermediary (2cyanoethoxy)triphenylphosphonium ion is much faster than substitution at the O^6 position by alkylation. Also an attempted alkylation with 3-iodopropanenitrile did not proceed in the anticipated manner. Finally, the method of Jones and co-workers [14] [15] was applied, converting 16 by 2.4,6-triisopropylbenzenesulfonyl chloride in the presence of Et₃N and N,N-dimethylpyridin-4-amine (DMAP) to 3',5'-bis-O-[(tertbutyl)dimethylsilyl]-2'-deoxy- O^6 -[(2,4,6-triisopropylphenyl)sulfonyl]guanosine (24), which reacted with 3-hydroxypropanenitrile in presence of Et₃N in a DABCOcatalyzed reaction to 3',5'-bis-O-[(tert-butyl)dimethylsilyl]-O⁶-(2-cyanoethyl)-2'-deoxyguanosine (25) in 63% yield (DABCO = 1,4-diazabicyclo[2.2.2]octane). Transformation of 25 into its N^2 -[(2-cyanoethoxy)carbonyl] derivative 27 proceeded well in a stepwise reaction first with chlorotrimethylsilane and then with 2-cyanoethyl carbonochloridate (5) in pyridine to give 27 in 92% yield. In a second, less effective two-step approach, 27 was prepared from 24 by (2-cyanoethoxy) carbonylation to give 3',5'-bis-O-[(tert-butyl)dimethylsilyl]-N²-[(2-cyanethoxy)carbonyl]-2'-deoxy-O⁶-[(2,4,6-triisopropylbenzene)sulfonyl]guanosine (26) in 17% yield, which was first treated with Me₃N and then with 2-hydroxypropanenitrile and DBU for 10 min, yielding 53% of 27. Scheme

The known [14] O^6 -(2-cyanoethyl)-protected 2'-deoxyguanosine derivative **28** was prepared by a slightly modified procedure in an improved yield of 79% (see *Exper. Part*), whereas the corresponding O^6 -[2-(4-nitrophenyl)ethyl] derivative **29** was obtained from the N^2 -isobutyryl derivative of **16** with PPh₃ and 2-(4-nitrophenyl)ethanol in the presence of ethyl azodicarboxylate in 51% yield.

The combination of the npe and ceoc group was achieved by transient protection of 2'-deoxy- O^{6} -[2-(4-nitrophenyl)ethyl]guanosine (30) [2] by trimethylsilylation and subsequent reaction with 5 in pyridine/CH₂Cl₂, yielding 75% of N^2 -[(2-cyanoethoxy)carbonyl]-2'-deoxy-O6-[2-(4-nitrophenyl)ethyl]guanosine (31). Its 5'-O-dimethoxytrityl derivative 32 resulted from treatment with dimethoxytrityl chloride in pyridine/ CH₂Cl₂ in 81% yield. A third blocking-group strategy was directed towards the synthesis of N^2 -[(2-cyanoethoxy)carbonyl)]-2'-deoxy- O^6 -[2-(phenylsulfonyl)ethyl]guanosine (36) starting from 3',5'-di-O-acetyl-2'-deoxy-O⁶-[2-(phenylthio)ethyl]guanosine (33) [16] prepared in a Mitsunobu reaction from 17 with 2-(phenylthio)ethanol. Deacetylation by ammonia converted **33** into 2'-deoxy-O⁶-[2-(phenylthio)ethyl]guanosine (34), which reacted at the thioether function by 3-chloroperbenzoic acid oxidation to the corresponding sulfone **35**, in 86% yield. Finally, **35** was acylated by 2cyanoethyl carbonochloridate (5) in a similar manner as 30 under transient trimethylsilyl protection to give 85% of 36. The dimethoxytritylation of the latter worked also well under standard conditions, forming N^2 -[(2-cyanoethoxy)carbony]-2'deoxy-5'-O-(dimethoxytrityl)- O^6 -[2-(phenylsulfonyl)ethyl]guanosine (37) in 73% isolated vield.

New monomeric building blocks for oligo-2'-deoxyribonucleotide synthesis *via* the phosphoramidite approach were prepared from the 2'-deoxy-5'-O-(dimethoxytrityl)ribonucleosides **22**, **23**, and **32** by 2-cyanoethyl tetraisopropylphosphorodiamidite and 1*H*-tetrazole, leading in very good yields to the corresponding 3'-(2-cyanoethyl diisopropylphosphoramidites) **38**–**40**.

Cleavage Studies. – In oligonucleotide synthesis, the final cleavage of the various protecting groups is of crucial importance to get clean products in reasonable times. To get a more quantitative understanding of the cleavage rates of the npe/npeoc vs. the ce/ ceoc blocking groups at the various sites of the common nucleosides, we started some comparative studies, focusing on the β -elimination reactions. The cleavages were done at room temperature with 0.5M DBU in MeCN or for solubility reasons in MeCN/DMF 1:1 and with 15 mol-equiv. of the appropriate nucleoside. Expectedly, there were small differences in the cleavage rates comparing analogous derivatives of the 2'-deoxyribo- and the ribo-series, as *e.g.* **11** vs. **22** and **12** vs. **23**, respectively, showing a somewhat

higher stability of the latter compounds (see *Table*). Furthermore, small differences were also noticed on changing the solvent from MeCN to MeCN/DMF 1:1 or by various substituents at the sugar moiety, but a drastic increase in the cleavage rates was observed in the presence of 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) as a tetrasubstituted guanidine derivative instead of DBU representing a cyclic amidine. A comparison of the (2-cyanoethoxy)carbonyl (ceoc) *vs.* the [2-(4-nitrophenyl)ethoxy]-carbonyl (npeoc) group revealed a substantial acceleration of the β -elimination process with the ceoc-protected compounds.

Unsubstituted nucleoside	Substituents ^a) at						$\tau_{1/2}$ [min]	Solvent	Base
	N^2 -	N^4	N^{6} -	O^{6} -	3'-0	5'-0			
dC (see 22)		ceoc				(MeO) ₂ Tr	5	MeCN	DBU
C (see 11)		ceoc				MeOTr	7	DMF/MeCN	DBU
							2.5	DMF/MeCN	TBD
dC		npeoc				(MeO) ₂ Tr	42	MeCN	DBU
C		npeoc				MeOTr	50	DMF/MeCN	DBU
							65	MeCN	DBU
							3.5	DMF/MeCN	TBD
dA (see 23)			ceoc			(MeO) ₂ Tr	13	DMF/MeCN	DBU
A (see 12)			ceoc			MeOTr	27	DMF/MeCN	DBU
							2	DMF/MeCN	TBD
dA			npeoc			(MeO) ₂ Tr	96	MeCN	DBU
dA			npeoc			MeOTr	97	DMF/MeCN	DBU
							111	MeCN	DBU
							7	DMF/MeCN	TBD
A			npeoc			MeOTr	94	DMF/MeCN	DBU
							126	MeCN	DBU
dG (see 27)	ceoc			ce	tmbs	tmbs	5700	DMF/MeCN	DBU
G (see 9)	ceoc						5000	MeCN	DBU
dG (see 31)	ceoc			npe			27	DMF/MeOH	DBU
dG (see 32)	ceoc			npe		(MeO) ₂ Tr	32	DMF/MeCN	DBU
dG (see 28)	ibu			ce	tbds	tbds	0.5	MeCN	DBU
dG	ibu			npe	tbds	tbds	17	DMF/MeCN	DBU
G	ibu			npe		MeOTr	12	DMF/MeCN	DBU
dG	npeoc			npe		(MeO) ₂ Tr	156	DMF/MeCN	DBU
dG (see 37)	ceoc			pse		(MeO) ₂ Tr	180	DMF/MeCN	DBU

Table. Half-lives of Protected Nucleosides

^a) ce = 2-cyanoethyl, ceoc = 2-(cyanoethoxy)carbonyl, npe = 2-(4-nitrophenyl)ethyl, npeoc = [2-(4-nitrophenyl)-ethoxy]carbonyl, tbds = (*tert*-butyl)dimethylsilyl, MeOTr = monomethoxytrityl, (MeO)₂Tr = dimethoxytrityl, pse = 2-(phenylsulfonyl)ethyl.

The most problematic nucleosides are always seen in the dG and G series, since their specific protection is most difficult and the removal of the protecting groups affords, in general, more severe reaction conditions. Also under our standard ceoc cleavage conditions, the presence of the N^2 -ceoc group increased the $\tau_{1/2}$ of the protected dG or G nucleosides to more than 8–9 h (see 9 and 27), since that anion formation at the nucleobase counteracts the β -elimination process for electronic reasons. On the other hand, it can also be seen from 28 that the O^6 -ce group is very labile, it showed the fastest cleavage rate of all protecting groups discussed. This result limits the combination of the ce and ceoc group in **27**, since the preferential deblocking of the O^6 -substituent leads to a stable, partially protected guanosine intermediate. From these findings, it can be concluded that the unified use of β -elimination protecting groups in the guanosine series requires a relatively stable O^6 -substituent, such as the npe group combined with the N²-ceoc function. N²-[(2-Cyanoethoxy)carbonyl]-2'deoxy- O^6 -2-[(4-nitrophenyl)ethyl]guanosine (**31**) and its 5'-O-(dimethoxytrityl)derivative **32** seem to have the anticipated properties, showing a $\tau_{1/2}$ of 27 and 32 min, respectively, which demonstrates the cleavage of the N²- prior to that of the O^6 substituent, as seen in the HPLC (*Fig.*). The introduction of the O^6 -2-(phenylsulfonyl)ethyl (pse) group in **37** is no alternative to npe since its cleavage was also very fast and succeeded the N²-ceoc group.

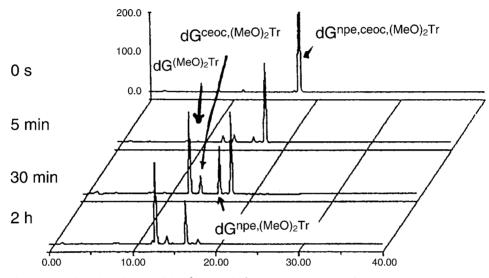


Figure. Time-dependent cleavage of the N²-ceoc and O⁶-npe protecting groups of **32** by DBU in DMF/MeCN at room temperature

Experimental Part

General. TLC: precoated silica-gel thin-layer sheets 60 F 254 from Merck. Prep. column chromatography: silica gel 0.04 mm from Baker. HPLC: Merck-Hitachi L6200 and L6200-A, column RP-18 LiChrospher (Merck, 125×4 mm, 5 µm), flow rate 1 ml/min, mobile phase 0.1M AcONH₄/MeCN. FC = flash chromatography. UV/ VIS: Perkin-Elmer Lambda-15; λ_{max} in nm (lg ε). ¹H-NMR: Bruker AC-250; δ in ppm rel. to SiMe₄. ³¹P-NMR: JEOL-400; δ in ppm rel. to H₃PO₄.

1. 2-Cyanoethyl Carbonochloridate (ceoc-Cl; **5**) [12]. Phosgene (14.85 g, 150 mmol) was condensed at -50° into a flask and then diluted with THF (34 ml). A soln. of 3-hydroxypropanenitrile (6.82 g, 96 mmol) in THF (140 ml) was added dropwise within 1.5 h under N₂. The soln. was stirred for 1.5 h at -30° and another 3 h at r.t. The excess phosgene together with the THF was condensed off under high vacuum into a cooling trap. The colorless viscous product still contained *ca*. 5% of 3-hydroxypropanenitrile. Because of the similar boiling points of educt and product, a further purification was not possible, and **5** containing 5% of educt was used in the following: 10.61 g (83%) of crude **5**. Colorless viscous liquid. B.p. $80-82^{\circ}/0.2$ Torr ([12]: $110-112^{\circ}/11$ Torr). ¹H-NMR (CDCl₃): 2.85 (*t*, CH₂CN); 4.52 (*t*, CH₂O).

2. 1-[(2-Cyanoethoxy)carbonyl]-3-methyl-1H-imidazolium Chloride (6). To an ice-cold soln. of 5 (4.67 g, 35 mmol) in CH₂Cl₂ (30 ml), 1-methyl-1H-imidazole (2.87 g, 35 mmol) in CH₂Cl₂ (2.5 ml) was added within

5 min. The mixture was stirred for 10 min at 0° and 3 h at r.t. The colorless precipitate was filtered off, washed with $CH_2Cl_2(3 \times)$ and dried *in vacuo*: 7.1 1 g (94%) of colorless powder. M.p. 101°. ¹H-NMR ((D₆)DMSO): 3.12 (*t*, OCH₂CH₂CN); 3.95 (*s*, MeN); 4.7 (*t*, 2 H, OCH₂CH₂CN); 7.95 (*s*, H–C(5)); 8.15 (*s*, H–C(4)); 10.1 (*s*, H–C(2)). Anal. calc. for $C_8H_{10}ClN_3O_3$ (215.6): C 44.56, H 4.67, N 19.49; found: C 43.99, H 4.75, N 19.05.

3. N⁴-[(2-Cyanoethoxy)carbonyl]cytidine (**7**). A mixture of cytidine (**1**; 0.487 g, 2 mmol) and a few crystals of ammonium sulfate was heated with hexamethyldisilazane (HMDS; 5 ml) in dry dioxane (5 ml) for 3 h under reflux. After evaporation, the residue was treated with toluene (50 ml), the mixture filtered, and the filtrate evaporated. The solid was dissolved in dry CH₂Cl₂ (40 ml), then **6** (0.56 g, 2.6 mmol) was added and stirred at r.t. for 24 h. After evaporation, MeOH (30 ml) was added, the mixture stirred for 24 h, and then the soln. concentrated to a smaller volume. The product started to crystallize and was collected after standing in the icebox overnight. Washing with cold MeOH (10 ml) and Et₂O and drying under high vacuum yielded colorless crystals: 0.579 g (85%) of **7**. M.p. 156–157°. UV (MeOH): 211 (4.31), 239 (4.15), 293 (3.87). ¹H-NMR ((D₆)DMSO): 10.90 (*s*, NH); 8.41 (*d*, H–C(6)); 6.98 (*d*, H–C(5)); 5.75 (*d*, H–C(1')); 5.40 (*d*, OH–C(2')); 5.16 (*t*, OH–C(5')); 5.04 (*d*, OH–C(3')); 4.28 (*t*, OCH₂CH₂CN); 3.96–3.89 (*m*, H–C(2'), H–C(3'), H–C(4')); 3.74–3.53 (*m*, 2 H–C(5')); 2.92 (*t*, OCH₂CH₂CN). Anal. calc. for C₁₃H₁₆N₄O₇ (340.3): C 45.88, H 4.74, N 16.46; found: C 45.65, H 4.82, 16.28.

4. N⁴-2-*[(Cyanoethoxy)carbonyl]-5'-*O-(4-methoxytrityl)cytidine (**11**). Compound **7** (0.5 g, 1.47 mmol) was co-evaporated with dry pyridine (3×5 ml), the residue suspended in dry pyridine (7 ml), monomethoxytrityl chloride (0.543 g, 1.76 mmol) added, and the mixture stirred at r.t. for 24 h. After evaporation and co-evaporation with toluene (3×12 ml), the residue was dissolved in CHCl₃ and then extracted with phosphate buffer pH 7 (2×50 ml) and H₂O (50 ml). The org. phase was dried (Na₂SO₄), evaporated, and purified by CC (silica gel (50 g, 3×16 cm), 0-5% MeOH/CHCl₃). The main fraction yielded, on evaporation and drying under high vacuum, a colorless solid: 0.686 g (76%) of **11**. UV (MeOH): 205 (4.76), 234 (4.39), 294 (3.89). ¹H-NMR ((D_6)DMSO): 10.91 (s, NH); 8.25 (d, H–C(6)); 7.40–7.23 (m, 12 arom. H); 6.90 (d, 2 H o to MeO); 6.78 (d, H–C(5)); 5.74 (s, H–C(1')); 5.64 (d, OH–C(2')); 5.11 (d, OH–C(3')); 4.28 (t, OCH₂CH₂CN); 4.14 (m, H–C(2')); 4.01 (m, H–C(3'), H–C(4')); 3.74 (s, MeO); 2.91 (t, OCH₂CH₂CN). Anal. calc. for C₃₃H₃₂N₄O₈ · 0.35 CHCl₃ (654.4): C 61.21, H 4.98, N 8.56; found: C 61.24, H 5.09, N 9.14.

5. N⁴-[(2-Cyanoethoxy)carbonyl]-2'-deoxycytidine (**18**). To a suspension of 2'-deoxycytidine hydrochloride (**13** · HCl; 2.64 g, 10 mmol) and **6** (2.59 g, 12 mmol) in DMF (100 ml), Pr_2NEt (1.7 ml, 10 mmol) was added and shaken for *ca*. 3 min to give a homogeneous soln. After stirring for 3 h at r.t., the solvent was distilled off under high vacuum at 30° bath temp. The residue was purified by FC (silica gel, 0–20% MeOH/CH₂Cl₂ (21)). The main fraction gave a solid, which was recrystallized from ¹PrOH: 2.57 g (79%) of **18**. Colorless crystals. TLC (CHCl₃/MeOH 4:1): R_f 0.44. M.p. 150–151°. UV (MeOH): 294 (3.89). ¹H-NMR ((D₆)DMSO): 2.0 (*m*, H–C(2')); 2.25 (*m*, 1 H–C(2')); 2.9 (*t*, OCH₂CH₂CN); 3.60 (*m*, 2 H–C(5')); 3.88 (*m*, H–C(4')); 4.2 (*m*, H–C(3')); 4.3 (*t*, OCH₂CH₂CN); 5.11 (*t*, OH–C(5')); 5.28 (*d*, OH–C(3')); 6.08 (*t*, H–C(1')); 7.0 (*d*, H–C(5)); 8.33 (*d*, H–C(6)); 10.9 (*s*, NHCOO). Anal. calc. for C₁₃H₁₆N₄O₆ (324.3): C 48.15, H 4.97, N 17.28; found: C 48.18, H 5.03, N 16.79.

6. N⁴-[(2-Cyanoethoxy)carbonyl]-2'-deoxy-5'-O-(4,4'-dimethoxytrityl)cytidine (**22**). A soln. of **18** (2.57 g, 7.93 mmol) in pyridine (10 ml) was co-evaporated twice and the residue then dissolved in pyridine (30 ml). Dimethoxytrityl chloride (2.95 g, 8.7 mmol) was added and stirred for 16 h. The reaction was quenched with MeOH (10 ml), the mixture evaporated, and the residue dissolved in CH₂Cl₂ (200 ml). After washing with sat. NaHCO₃ soln. (2 × 200 ml), the org. phase was dried (Na₂SO₄) and evaporated. The residue was recrystallized from AcOEt. From the filtrate, a second crop was obtained by FC (silica-gel (20 g), toluene/AcOEt/MeOH 1:2:0 → 5:5:1): 4.15 g (84%) of **15**. Colorless crystals. TLC (CHCl₃/MeOH 9:1): R_{f} 0.34. UV (MeOH): 283 (3.95), 294 (sh, 3.92). ¹H-NMR ((D₆)DMSO): 2.15 (m, 1 H–C(2')); 2.35 (m, 1 H–C(2')); 2.95 (t, OCH₂CH₂CN); 3.25 (m, 2 H–C(5')); 3.75 (s, 2 MeO); 3.95 (m, H–C(4')); 4.21 (m, H–C(2')); 4.3 (t, OCH₂CH₂CN); 5.35 (d, OH–C(3')); 6.1 (t, H–C(1')); 6.9 (d, H–C(5)); (d, 4 H o to MeO); 7.2–7.4 (m, 9 arom. H); 8.15 (d, H–C(6)); 10.9 (s, NHCOO). Anal. calc. for C₃₄H₃₄N₄O₈·H₂O (644.7): C 63.35, H 5.63, N 8.69; found: C 63.81, H 5.58, N 8.52.

7. N⁶-[(2-Cyanoethoxy)carbonyl]adenosine (8). Adenosine (2; 1.106 g, 4 mmol) and a few crystals of ammonium sulfate were heated with HMDS (16 ml) in dry dioxane (15 ml) for 6 h under reflux. The mixture was evaporated, the resulting syrup treated with dry toluene, the undissolved material filtered off, and then the filtrate evaporated. The residue was dissolved in dry CH₂Cl₂ (80 ml), **6** (1.08 g, 5 mmol) was added and stirred at r.t. for 20 h. After evaporation, the residue was treated with EtOH (60 ml) and MeOH (10 ml) by stirring to give a colorless precipitate. The solid was washed with EtOH and Et₂O and dried under vacuum: 1.165 g (80%) of **8**. M.p. 158 – 161°. UV (MeOH): 209 (4.45), 266 (4.26), 273 (sh, 4.15). ¹H-NMR ((D₆)DMSO): 10.82 (s, NH); 8.70

(s, H-C(2)); 8.65 (s, H-C(8)); 5.99 (d, H-C(1')); 5.54 (br. s, OH-C(2')); 5.21 (br. s, OH-C(3'), OH-C(5')); 4.60 (t, H-C(2')); 4.31 (t, OCH₂CH₂CN); 4.16 (m, H-C(3')); 3.95 (m, H-C(4')); 3.85-3.52 (m, 2 H-C(5')); 2.94 (t, OCH₂CH₂CN). Anal. calc. for C₁₄H₁₆N₆O₆ (364.3): C 46.15, H 4.42, N 23.06; found: C 46.05, H 4.57, N 22.78.

8. 2',3',5'-*Tri*-O-*acetyl*-N⁶-[(2-cyanoethoxy)carbonyl]adenosine (**10**). To a cold suspension of 2',3',5'-tri-O-acetyladenosine (**4**; 0.197 g, 0.5 mmol) in 1M 1-methyl-1*H*-imidazole in MeCN (2 ml), **5** (0.35 g, 2.3 mmol) was added under stirring and ice-cooling. After 30 min, the mixture was warmed to r.t., and stirring continued until the starting material had disappeared. The mixture was diluted with CHCl₃ and extracted twice with H₂O (25 ml). The org. phase was dried (Na₂SO₄) and evaporated, and the residue purified by CC (silica gel (20 g, 40 × 2 cm), CHCl₃/MeOH 95 :5, then 4 :1): 0.225 g (90%) of **10**. Colorless solid foam. UV (MeOH): 209 (4.39), 254 (sh, 4.13), 265 (4.22), 272 (sh, 4.12). ¹H-NMR (CDCl₃): 9.30 (*s*, NHCOO); 8.81 (*s*, H–C(2)); 8.25 (*s*, H–C(8)); 6.25 (*d*, H–C(1')); 5.97 (*m*, H–C(2')); 5.7 (*m*, H–C(3')); 4.55–4.335 (*m*, 2 H–C(5'), H–C(4'), OCH₂CH₂CN); 2.85 (*t*, OCH₂CH₂CN); 2.15 (3*s*, Ac). Anal. calc. for C₂₀H₂₂N₆O₉·0.5 H₂O (499.4): C 48.10, H 4.64, N 16.83; found: C 48.02, H 4.62, N 16.64.

9. N⁶-[(2-Cyanoethoxy)carbonyl]-5'-O-(4-methoxytrityl)adenosine (12). N⁶-[(2-Cyanoethoxy)carbonyl]adenosine (8; 0.5 g, 1.37 mmol) was co-evaporated with dry pyridine (3×10 ml), the residue dissolved in the same solvent (5 ml), and then monomethoxytrityl chloride (0.5 g, 1.64 mmol) added. After stirring at r.t. for 24 h, the reaction was quenched by MeOH (1 ml) and stirring for 25 min. The soln. was evaporated and coevaporated with toluene (2×10 ml) and CHCl₃ (3×10 ml). The residue was dissolved in CHCl₃ and extracted with phosphate buffer pH 7 (2×50 ml) and H₂O (50 ml). The org. phase was dried (Na₂SO₄) and evaporated and the residue purified by CC (silica gel (50 g, 16×3 cm), 0-3% MeOH/CHCl₃: 0.751 g (86%) of 12. Colorless foam: UV (MeOH): 206 (4.80), 232 (8h, 4.25), 266 (4.26), 274 (8h, 4.14). ¹H-NMR ((D_6)DMSO): 10.83 (s, NH); 8.58 (s, H-C(2), H-C(8)); 7.37-7.19 (m, 12 arom. H); 6.84 (d, 2 H o to MeO); 6.02 (d, H-C(1')); 5.61 (d, OH-C(2')); 5.27 (d, OH-C(3')); 4.74 (m, H-C(2')); 4.31 (m, H-C(3'), OCH₂CH₂CN); 4.10 (m, H-C(4')); 3.72 (s, MeO); 3.23 (br. s, 2 H-C(5')); 2.92 (t, OCH₂CH₂CN). Anal. calc. for C₃₄H₃₂N₆O₇·0.4 CHCl₃ (684.4): C 60.36, H 4.77, N 12.27; found: C 60.25, H 4.89, N 12.12.

10. N⁶-[(2-Cyanoethoxy)carbony]]-2'-deoxyadenosine (**19**). A soln. of 2'-deoxyadenosine (**14**; 0.50 g, 2 mmol) in dioxane (8 ml) was treated with HMDS (8 ml) and some crystals of $(NH_4)_2SO_4$ by heating under reflux for 5 h. The mixture was evaporated and the residue co-evaporated with toluene (5 ml) and then redissolved in CH₂Cl₂ (40 ml). Then **6** (0.538 g, 2.5 mmol) was added and the resulting suspension stirred for 20 h at r.t. The precipitate was filtered off and washed with CH₂Cl₂ (3 × 5 ml), the combined org. soln. evaporated, and the residue co-evaporated with toluene (2 × 5 ml), the combined org. soln. evaporated, and the residue co-evaporated with toluene (2 × 5 ml), MeOH (2 × 5 ml), and CH₂Cl₂ (2 × 5 ml). The resulting solid was purified by FC (silica gel (15 g), 0–10% MeOH/CH₂Cl₂ (800 ml)): 0.57 g (82%) of **19**. Colorless foam. TLC (CHCl₃/MeOH 4 :1): R_1 0.57. UV (MeOH): 266 (4.20), 273 (sh, 4.11). ¹H-NMR ((D₆)DMSO): 2.30 (m, 1 H–C(2')); 2.75 (m, 1 H–C(2')); 2.95 (t, OCH₂CH₂CN); 3.55 (m, 2 H–C(5')); 3.88 (m, H–C(4')); 4.30 (t, OCH₂CH₂CN); 4.42 (m, H–C(3')); 5.01 (t, OH–C(5')); 5.35 (d, OH–C(3')); 6.45 (t, H–C(1')); 8.65 (s, H–C(2)); 8.67 (s, H–C(8)); 10.8 (s, NHCOO). Anal. calc. for C₁₄H₁₆N₆O₅·H₂O (366.3): C 45.90, H 4.95, N 22.94; found: C 45.63, H 4.62, N 22.51.

11. N⁶-[(2-Cyanoethoxy)carbonyl]-2'-deoxy-5'-O-(4,4'-dimethoxytrityl)adenosine (**23**). A soln. of **19** (3.8 g, 10.9 mmol) in dry pyridine (15 ml) was evaporated, the residue dissolved in pyridine (40 ml), 4,4'-dimethoxytrityl chloride (4 g, 12 mmol) added, and the mixture stirred for 16 h. The soln. was reduced to 1/3 of its volume, diluted with CH₂Cl₂ (300 ml), and washed with sat. NaHCO₃ soln. (2 × 300 ml). The org. phase was dried (Na₂SO₄), evaporated, and co-evaporated with toluene (2 × 15 ml), MeOH (2 × 15 ml), and CH₂Cl₂ (2 × 15 ml). The residue was purified by FC (silica-gel (70 g), AcOEt/toluene 3 :1 → AcOEt/toluene/MeOH 40 :2 :1 (1800 ml)): 6.5 g (92%) of **23**. Colorless solid foam. TLC (CHCl₃/MeOH 9 :1): R_f 0.41. UV (MeOH): 267 (4.23), 274 (sh, 4.14). ¹H-NMR ((D₆)DMSO): 2.37 (m, 1 H–C(2')); 2.90 (m, 1 H–C(2')); 2.93 (t, OCH₂CH₂CN); 3.17 (m, 2 H–C(5')); 3.69 (s, 2 MeO); 4.01 (m, H–C(4')); 4.31 (t, OCH₂CH₂CN); 4.50 (m, H–C(3')); 5.42 (d, OH–C(3')); 6.46 (t, H–C(1')); 6.77 (m, 4 H o to MeO); 7.1–7.35 (m, 9 arom. H); 8.56 (s, H–C(2), H–C(8)); 10.81 (s, NHCOO). Anal. calc. for C₃₄H₃₄N₆O₇ (650.7): C 64.61, H 5.27, N 12.92; found: C 64.82, H 5.48, N 12.14.

12. N²-*[*(2-*Cyanoethoxy*)*carbonyl]guanosine* (9). A mixture of dry guanosine (3) (1.4 g, 5 mmol) and Me₃SiCl (5 ml) in pyridine (40 ml) was stirred at r.t. for 4 h. Then, a soln. of **5** (1.33 g, 10 mmol) in CH₂Cl₂ (10 ml) was added. The resulting mixture was stirred at r.t. for 20 h and the precipitate filtered off. The soln. was evaporated and co-evaporated with toluene (30 ml). The residue was dissolved in MeOH (70 ml), the soln. stirred at r.t. for 18 h and evaporated, and the residue purified by CC (silica gel (3.5 × 5 cm), CH₂Cl₂/MeOH

 $50:1 \rightarrow 9:1$) and finally crystallized from 90% EtOH: 1.02 g (54%) of **9**. M.p. 190°. UV (MeOH): 256 (4.23), 277 (sh, 4.04). ¹H-NMR ((D₆)DMSO): 11.62, 11.31 (2*s*, NH); 8.23 (*s*, H–C(8)); 5.77 (*d*, H–C(1')); 5.46 (*d*, OH–C(2')); 5.16 (*d*, OH–C(3')); 4.97 (br. *s*, OH–C(5')); 4.47 (*t*, OCH₂CH₂ON); 4.12 (*m*, H–C(3')); 3.87 (*m*, H–C(4')); 3.57 (*m*, 2 H–C(5')); 2.96 (*t*, OCH₂CH₂CN). Anal. calc. for C₁₄H₁₆N₆O₇ (380.3): C 44.21, H 4.24, N 22.09; found: C 44.01, H 4.34, N 21.67.

13. N²-*[*(2-*Cyanoethoxy*)*carbonyl]-2'-deoxyguanosine* (**20**). Dry 2'-deoxyguanosine (**15**; 0.2 g, 0.75 mmol) was twice co-evaporated with dry pyridine (5 ml). The residue was suspended in dry pyridine (1.5 ml), Me₃SiCl (0.5 ml, 4 mmol) added, the mixture stirred for 90 min, and then a soln. of **5** (0.14 g, 1.05 mmol) in CH₂Cl₂ (1.5 ml) dropwise added. Stirring was continued at r.t. for 7 h, the solid pyridinium chloride filtered off and washed twice with CH₂Cl₂ (2.5 ml), and then the filtrate evaporated. The residue was dissolved in MeOH (5 ml), the soln. stirred for 20 min and evaporated, the solid dissolved in AcOEt (15 ml), the soln. washed with H₂O (15 ml), the aq. phase re-extracted with AcOEt (3 × 15 ml), the combined org. phase dried (Na₂SO₄) and evaporated, and the residue purified by CC (silica gel (8 g; 2.5 cm), CH₂Cl₂/MeOH 9 :1): 51 mg (19%). TLC (CHCl₃/MeOH 6:1): *R*_f 0.21. ¹H-NMR ((D₆)DMSO): 11.58 (*s*, NH); 11.30 (*s*, NH); 8.21 (*s*, H–C(8)); 6.17 ('*t*', H–C(1')); 5.25 (*d*, OH–C(3')); 4.92 (*t*, OH–C(5')); 4.38 (*m*, H–C(3'), OCH₂CH₂CN); 3.80 (*m*, H–C(4')); 3.55 (*m*, 2 H–C(5')); 2.95 (*t*, OCH₂CH₂CN); 2.65 (*m*, 1 H–C(2')); 2.25 (*m*, 1 H–C(2')).

14. 3',5'-Bis-O-[(tert-butyl)dimethylsilyl]-N²-[(2-cyanoethoxy)carbonyl]-2'-deoxyguanosine (21). A mixture of 3',5'-bis-O-[(tert-butyl)dimethylsilyl]-2'-deoxyguanosine (16) [17] (0.14 g, 0.28 mmol) in dry pyridine (2 ml) was evaporated twice. The residue was dissolved in CH₂Cl₂ (3 ml), and then Et₃N (0.16 ml, 1.15 mmol) and Me₃SiCl (0.1 ml, 0.8 mmol) were added. After stirring for 15 min, the mixture was evaporated and coevaporated twice with dry pyridine (2 ml), the residue dissolved in CH₂Cl₂ (2 ml) and pyridine (2 ml), and **5** (38 mg, 0.29 mmol) added. The mixture was stirred at r.t. for 15 h and then evaporated, the residue dissolved in CH₂Cl₂ (10 ml), the soln. extracted with H₂O (5 ml), the aq. phase re-extracted with CH₂Cl₂ (3 ×), the combined org. phase dried (Na₂SO₄) and evaporated, and the residue purified by CC (silica gel (6 g), 0.1 – 6% MeOH/CH₂Cl₂): 29 mg (22%) of **21**. Colorless solid foam. *R*_t (CHCl₃/MeOH 9 :1) 0.22. ¹H-NMR ((D₆)DMSO): 11.55 (s, NH); 11.40 (s, NH); 8.20 (s, H-C(8)); 6.21 ('t', H-C(1')); 4.50 (m, H-C(3')); 4.43 (t, OCH₂CH₂CN); 3.81 (m, H-C(4')); 3.65 (m, 2 H-C(5')); 2.95 (t, OCH₂CH₂CN); 2.75 (m, 1 H-C(2')); 2.40 (m, 1 H-C(2')); 0.88 (s, 1 'Bu); 0.85 (s, 'Bu); 0.10 (s, Me₂Si); 0.00 (s, Me₂Si).

15. 3',5'-Bis-O-[(tert-butyl)dimethylsilyl]-O⁶-(2-cyanoethyl)-2'-deoxy-N²-isobutyrylguanosine (28) [14]. 15.1. To a soln. of 3',5'-bis-O-[(tert-butyl)dimethylsilyl]-2'-deoxy-N²-isobutyryl-O⁶-[(2,4,6-triisopropylphenyl)sulfonyl]guanosine [14] (1.27 g, 1.46 mmol) and 3-hydroxypropanenitrile (1.35 ml, 19.8 mmol) in dry CH₂Cl₂ (25 ml) under N₂, Me₃N (1.27 g, 21.5 mmol) was added under cooling. After stirring for 10 min, DBU (0.45 g, 0.445 mmol) was added, and, after another 10 min, the reaction was quenched by diluting with CH₂Cl₂ (25 ml) and extraction with sat. NH₄Cl soln. (2 × 25 ml) and H₂O (25 ml). The org. phase was dried (Na₂SO₄) and evaporated, and the residue purified by CC (silica gel (20 g; 5 × 2.5 cm), CH₂Cl₂): 0.71 g (79%) of 28. Yellowish solid foam.

15.2. As described in 15.1, with small amounts of DABCO (3 mg) instead of DBU, and with Et₃N instead of Me₃N, and with stirring at r.t. for 28 h. Workup yielded 64% of **28**. UV (MeOH): 219 (sh, 4.32), 268 (4.22), 279 (4.06). ¹H-NMR ((D₆)DMSO): 10.45 (s, NH); 8.41 (s, H–C(8)); 6.30 ('t', H–C(1')); 4.70 (m, H–C(3'), OCH₂CN₂CN); 3.81 (m, 2 H–C(5')); 3.75 (m, H–C(4')); 3.20 (t, OCH₂CH₂CN); 2.95 (sept., Me₂CH); 2.80 (m, 1 H–C(2')); 2.21 (m, 1 H–C(2')); 1.08 (d, Me₂CH); 0.90 (s, 1 'Bu); 0.82 (s, 1 'Bu); 0.12 (s, Me₂Si); -0.02 (s, 1 Me₂Si). Anal. calc. for C₂₉H₅₀N₆O₅Si₂ (618.9): C 56.27, H 8.14, N 13.58; found: C 56.32, H 8.21, N 13.42. 16. 3',5'-Bis-O-[(tert-butyl)dimethylsilyl]-2'-deoxy-N²-isobutyryl-O⁶-[2-(4-nitrophenyl)ethyl]guanosine

(29). After co-evaporation of 3',5'-bis-O-[(*tert*-butyl)dimethylsilyl]-2'-deoxy- N^2 -isobutyrylguanosine (0.5 g, 0.88 mmol) with dry dioxane (2 × 8 ml), the residue was dissolved in the same solvent (18 ml). Triphenylphosphine (0.37 g, 1.41 mmol) and 2-(4-nitrophenyl)ethanol (0.222 g, 1.32 mmol) were added. After stirring for 15 min at r.t., ethyl azodicarboxylate (=diethyl diazenedicarboxylate; 0.25 g, 1.42 mmol) was added, the mixture stirred for 3 h, and again some ethyl azodicarboxylate (30 µl) added to complete the reaction within 1 h. The soln. was evaporated, the residue dissolved in CH₂Cl₂ (3.5 ml) and the soln. cooled overnight. The precipitate of diethyl hydrazine-1,2-dicarboxylate was washed with CH₂Cl₂, the combined filtrate evaporated and the residue again treated with CH₂Cl₂ to give a second crop of diethyl hydrazine-1,2-dicarboxylate. Purification by CC (silica gel (18 g; 6 × 2.5 cm), 0–12% AcOEt/toluene) yielded a crude product, which still contained some diethyl hydrazine-1,2-dicarboxylate: 0.322 g (51%). A pure anal. sample of **29** was obtained by prep. TLC (silica gel, toluene/AcOEt 3 :1). UV (MeOH): 206 (4.38), 217 (sh, 4.46), 269 (4.42), 281 (4.29). ¹H-NMR ((D₆)DMSO): 10.38 (s, NH); 8.35 (s, H–C(8)); 8.15 (d, 2 H o to NO₂); 7.65 (d, 2 H m to NO₂); 6.30 ('t', H–C(1')); 4.81 (t, ArCH₂CH₂O); 4.7 (m, H–C(3')); 3.79 (m, 2 H–C(5')); 3.68 (m, H–C(4')); 3.32

 $(t, \text{ArCH}_2\text{CH}_2\text{O}); 3.00 \text{ (sept., Me}_2\text{CH}); 2.79 \text{ }(m, 1 \text{ H}-\text{C}(2')); 2.25 \text{ }(m, 1 \text{ H}-\text{C}(2')); 1.10 \text{ }(d, Me}_2\text{CH}); 0.91 \text{ }(s, 1 \text{ 'Bu}); 0.82 \text{ }(s, 1 \text{ 'Bu}); 0.12 \text{ }(s, \text{Me}_2\text{Si}); -0.05 \text{ }(s, 1 \text{ Me}_2\text{Si}). \text{ Anal. calc. for } \text{C}_{34}\text{H}_{54}\text{N}_6\text{O}_7\text{Si}_2 \text{ }(715.0): \text{C} 57.11, \text{H} 7.61, \text{N} 11.75; \text{ found: C} 56.54, \text{H} 7.51, \text{N} 11.54.$

17. 3',5'-Bis-O-[(tert-butyl)dimethylsilyl]-2'-deoxy-O⁶-[(2,4,6-triisopropylphenyl)sulfonyl]guanosine (24). A soln. of 3',5'-Bis-O-[(tert-butyl)dimethylsilyl]-2'-deoxyguanosine (16; 1 g, 2.02 mmol) in dry pyridine (8 ml) was twice co-evaporated and then dissolved in CH₂Cl₂ (15 ml) and pyridine (15 ml). After addition of 2,4,6-triisopropylbenzenesulfonyl chloride (1.27 g, 4.2 mmol), DMAP (25 mg, 0.2 mmol), and Et₃N (1.5 ml, 10.6 mmol), the soln. was stirred for 14 h at 50° to give a colorless precipitate of (Et₃NH)Cl. The soln. was diluted with CH₂Cl₂ (30 ml) and washed with H₂O (3 × 20 ml), the aq. phase extracted with CH₂Cl₂ (20 ml), and then the combined org. phases dried (Na₂SO₄) and evaporated. Purification by FC (silica-gel (30 g), toluene/AcOEt 10:1) gave 0.907 g (59%) of 24. Lightly orange foam. TLC (CHCl₃/MeOH 49:1): R_f 0.41. UV (MeOH): 291 (3.98), 252 (sh, 3.93), 207 (4.72). 'H-NMR ((D₆)DMSO): -0.05 (s, 1 Me₂Si); 0.00 (s, 1 Me₂Si); 0.80 (s, 1 'Bu); 0.84 (s, 1 'Bu); 1.20 (d, 3 Me₂CH); 2.25 (m, 1 H–C(2')); 2.75 (m, 1 H–C(2')); 2.95 (sept., 1 Me₂CH); 3.65 (m, 2 H–C(5')); 3.81 (m, H–C(4')); 4.1 (sept., 2 Me₂CH o to SO₂); 4.5 (m, H–C(3')); 6.20 (t, H–C(1')); 6.65 (s, NH₂); 7.33 (s, 2 arom. H); 8.20 (s, H–C(8)). Anal. calc. for C₃₇H₆₃N₅O₆SSi₂ (762.2): C 58.31, H 8.33, N 9.19; found: C 58.22, H 8.44, N 9.17.

18. 3',5'-Bis-O-[(tert-butyl)dimethylsilyl]-O⁶-(2-cyanoethyl)-2'-deoxyguanosine (**25**). After co-evaporation of **24** (0.2 g, 0.26 mmol) with CH₂Cl₂ (2×5 ml), the residue was dissolved in CH₂Cl₂ (8 ml), and after addition of Et₃N (0.3 ml, 2.11 mmol), 3-hydroxypropanenitrile (0.1 ml, 1.42 mmol), and a cat. amount of DABCO, the mixture was stirred for 48 h at r.t. The soln. was diluted with CH₂Cl₂ (10 ml), washed twice with sat. NH₄Cl soln., the org. phase dried (Na₂SO₄) and evaporated, and the resulting solid purified by FC (silica gel (8 g), CH₂Cl₂ (300 ml), CH₂Cl₂/MeOH 49 :1 (200 ml)): 90 mg (63%) of **29**. Yellowish foam. TLC (CHCl₃/MeOH 25 :1): *R*_t 0.34. UV (MeOH): 283 (3.98), 247 (4.00). ¹H-NMR ((D₆)DMSO): 0.05 (s, 1 Me₂Si); 0.14 (s, 1 Me₂Si); 0.86 (s, 'Bu); 0.88 (s, 'Bu); 2.25 (m, 1 H–C(2')); 2.75 (m, 1 H–C(2')); 3.1 (t, OCH₂CH₂CN); 3.7 (m, 2 H–C(5')); 3.85 (m, H–C(4')); 4.52 (m, H–C(3')); 4.58 (t, OCH₂CH₂CN); 6.20 (t, H–C(1')); 6.55 (s, NH₂); 8.12 (s, H–C(8)). Anal. calc. for C₂sH₄A₉O₄Si₂ (548.8): C 54.72, H 8.08, N 15.31; found: C 54.20, H 8.08, N 14.76.

19. 2'-Deoxy-O⁶-[2-(phenylthio)ethyl]guanosine (**34**). A soln. of 3',5'-bis-O-acetyl-2'-deoxy-O⁶-[2-(phenylthio)ethyl]guanosine (**33**) [16] (3.23 g, 5.66 mmol; contaminated with 16% of triphenyl phosphine) in dioxane (100 ml), MeOH (100 ml), and conc. ammonia (50 ml) was stirred for 20 h at r.t. The solvents were distilled off, and the residue was co-evaporated with toluene (2×20 ml), MeOH (2×20 ml), and CH₂Cl₂ (20 ml). The solid was purified by FC (silica gel (60 g), 0–5% MeOH/CH₂Cl₂ (1500 ml)): 2.03 g (89%) of **34**. Yellowish foam. TLC (CHCl₃/MeOH 9:1): R_f 0.42. UV (MeOH): 281 (4.08), 250 (4.26). ¹H-NMR ((D₆)DMSO): 2.20 (*m*, 1 H–C(2')); 2.61 (*m*, 1 H–C(2')); 3.45 (*t*, OCH₂CH₂C); 3.52 (*m*, 2 H–C(5')); 3.82 (*m*, H–C(4')); 4.38 (*m*, H–C(3')); 4.55 (*t*, OCH₂CH₂S); 5.00 (*t*, OH–C(5')); 5.28 (*d*, OH–C(3')); 6.18 (*t*, H–C(1')); 6.45 (*s*, NH₂); 7.18 (*m*, H *p* to SCH₂); 7.32 (*m*, 2 H *o* to SCH₂); 7.45 (*m*, 2 H *m* to SCH₂); 8.10 (*s*, H–C(8)). Anal. calc. for $C_{18}H_{21}N_5O_4S \cdot H_2O$ (421.5): C 51.30, H 5.5, N 16.62; found: C 51.88, H 5.55, N 17.10.

20. 2'-Deoxy-O⁶-[2-(phenylsulfonyl)ethyl]guanosine (**35**). A soln. of **34** (42 mg, 0.104 mmol) in CH₂Cl₂ (5 ml) was treated with 55% 3-chloroperbenzoic acid (65 mg, 0.208 mmol) at 0° for 1 h. The soln. was concentrated *in vacuo* to 1/5 of its volume and then the product isolated by FC (silica gel (4 g), CH₂Cl₂ (200 ml), CH₂Cl₂/MeOH 98 : 2 (100 ml)): 41 mg (91%) of **35**. Colorless foam. TLC (CHCl₃/MeOH 9 : 1): R_f 0.38. UV (MeOH): 283 (3.93), 272 (4.40). ¹H-NMR ((D₆)DMSO): 2.2 (*m*, 1 H–C(2')); 2.55 (*m*, 1 H–C(2')); 3.55 (*m*, 2 H–C(5')); 3.80 (*m*, H–C(4')); 3.95 (*t*, OCH₂CH₂SO₂); 4.35 (*m*, H–C(3')); 4.65 (*t*, OCH₂CH₂SO₂); 4.95 (*t*, OH–C(5')); 5.25 (*d*, OH–C(3')); 6.18 (*t*, H–C(1')); 6.43 (*s*, NH₂); 7.55–7.70 (*m*, 3 arom. H); 7.90 (*m*, 2 arom. H); 8.05 (*s*, H–C(8)). Anal. calc. for C₁₈H₂₁N₅O₆S·0.75 H₂O (448.9): C 48.16, H 5.05, N 15.59; found: C 48.26, H 4.92, N 15.01.

21. 3',5'-Bis-O-[(tert-butyl)dimethylsilyl]-N²-2-[(cyanoethoxy)carbonyl]-2'-deoxy-O⁶-[(2,4,6-triisopropylphenyl)sulfonyl]guanosine (**26**). A soln. of 3',5'-bis-O-[(tert-butyl)dimethylsilyl]-2'-deoxy-O⁶-[(2,4,6-triisopropylphenyl)sulfonyl]guanosine (**24**; 0.3 g, 0.394 mmol) in dry pyridine (2 × 3 ml) was co-evaporated and then dissolved in a mixture of CH₂Cl₂ (3 ml) and pyridine (3 ml). Me₃SiCl (0.27 ml, 2.16 mmol) was added, the soln. stirred for 30 min, then **5** (158 mg, 1.18 mmol) added, and the resulting suspension stirred for 4 h at 40°. The reaction was quenched by the addition of H₂O (4 ml) followed by CH₂Cl₂ (10 ml), the mixture stirred for 5 min and then extracted twice with H₂O, the org. phase dried (Na₂SO₄) and evaporated, and the residue coevaporated with toluene (2 × 5 ml), MeOH (2 × 5 ml), and CH₂Cl₂ (2 × 5 ml). The resulting solid was purified by FC (silica-gel (8 g), 10–30% AcOEt/toluene (400 ml)): 50 mg (17%) of **26**. TLC (CHCl₃/MeOH 49 :1): R_f 0.32. UV (MeOH): 278 (4.10), 238 (sh, 4.25). ¹H-NMR ((D₆)DMSO): -0.05 (s, 1 Me₂Si); 0.10 (s, 1 Me₂Si); 0.80 (s, 1 'Bu); 0.9 (s, 'Bu); 1.2 (d, 3 Me₂CH); 2.35 (m, 1 H–C(2')); 2.95–3.05 (m, 1 H–C(2'), OCH₂CH₂CN, 1 Me₂CH); 3.65–3.90 (m, 2 H–C(5'), H–C(4')); 4.15 (*sept.*, 2 Me₂CH); 4.25 (t, OCH₂CH₂CN); 4.65 (m, H–C(3')); 6.35 (t, H–C(1')); 7.35 (s, 2 arom. H); 8.55 (s, H–C(8)); 10.68 (s, NH–C(2)). Anal. calc. for C₄₁H₆₆N₆O₈SSi₂·H₂O (877.3): C 56.14, H 7.81, N 9.57; found: C 56.40, H 7.83, N 8.84.

22. 3',5'-Bis-O-[(tert-butyl)dimethylsilyl]-N²-2-[(cyanoethoxy)carbonyl]-O⁶-(2-cyanoethyl)-2'deoxyguanosine (27). 22.1. Into a soln. of 26 (80 mg, 0.09 mmol) in CH₂Cl₂ (3 ml), Me₃N (130 mg, 0.106 mmol) was condensed at 0°. After stirring for 10 min at 0°, 3-hydroxypropanenitrile (0.166 g, 2.34 mmol) and DBU (44 mg, 0.29 mmol) were added, and the mixture was stirred for max. 10 min at 0° and then diluted with CH₂Cl₂ (4 ml). The soln. was washed with NH₄Cl soln. (3 ×), the org. phase dried (Na₂SO₄) and evaporated, and the residue purified by FC (silica gel (4 g), CH₂Cl₂ (200 ml), CH₂Cl₂/MeOH 49:1 (200 ml)): 31 mg (53%) of 27. Yellowish foam.

22.2. After co-evaporation of **25** (0.15 g, 0.27 mmol) with dry pyridine (2 × 2 ml), the residue was dissolved in pyridine (1.5 ml) and CH₂Cl₂ (3 ml). Me₃SiCl (88 mg, 0.9 mmol) in CH₂Cl₂ (0.5 ml) was added, and the soln. was stirred for 30 min at r.t. Then **5** (57 m, 0.425 mmol) was added and stirring continued for another 4.5 h. The reaction was quenched by the addition of MeOH (8 ml), the mixture stirred for 15 min and then evaporated, and the residue treated with H₂O (10 ml) and AcOEt (10 ml). The aq. phase was extracted with AcOEt (3 × 10 ml), the combined org. phase dried (Na₂SO₄) and evaporated, and the resulting solid purified by FC (silicagel (6 g), CH₂Cl₂ (400 ml), then CH₂Cl₂/MeOH 400:1 (200 ml)): 0.161 g (92%) of **27**, identical with the product from *22.1*. Yellowish foam. TLC (CHCl₃/MeOH 9:1): R_f 0.68. UV (MeOH): 268 (4.13), 277 (sh, 3.96). ¹H-NMR ((D₆)DMSO): 0.05 (s, 1 Me₂Si); 0.1 (s, 1 Me₂Si); 0.85 (s, 1 Bu); 0.9 (s, 1 Bu); 2.30 (m, 1 H–C(2')); 3.41 (m, 2 H–C(5')); 4.28 (t, OCH₂CH₂CN); 4.70 (m, H–C(3')), OCH₂CH₂CN); 6.35 (t, H–C(1')); 8.81 (m, 2 H–C(5')); 4.28 (t, OCH₂CH₂CN); 4.70 (m, H–C(3')), OCH₂CH₂CN); 6.35 (m, H–C(4')); 3.81 (m, 2 H–C(5')); 10.62 (s, NH–C(2)). Anal. calc. for C₂₉H₄₇N₇O₆Si₂ (645.9): C 53.93, H 7.33, N 15.18; found: C 53.82, H 7.15, N 14.83.

23. N²-[(2-Cyanoethoxy)carbony]]-2'-deoxy-O⁶-[2-(4-nitrophenyl)ethyl]guanosine (**31**). A soln. of 2'-deoxy-O⁶-[2-(4-nitrophenyl)ethyl]guanosine (**30**) [2] (0.90 g, 2.16 mmol) in dry pyridine (2×5 ml) was co-evaporated and then the residue dissolved in a mixture of dry pyridine (8.5 ml) and CH₂Cl₂ (11 ml). After addition of Me₃SiCl (1.6 ml, 12.8 mmol) and stirring for 20 min, a precipitate of pyridinium chloride was formed. To this mixture, **5** (0.414 g, 3.1 mmol) in CH₂Cl₂ (2 ml) was added, and stirring was continued at r.t. for 4 h. The reaction was quenched by addition of MeOH (20 ml) to hydrolyze the Me₃Si groups. After stirring for 20 min and evaporation, the residue was treated with H₂O (40 ml) and AcOEt (40 ml). The aq. phase was extracted with AcOEt ($3 \times$) and the combined org. phase evaporated and co-evaporated with toluene (2×15 ml), MeOH (2×15 ml), and CH₂Cl₂ (3×15 ml). The resulting residue was supended in CH₂Cl₂, then the insoluble material filtered off and dried: 0.836 g (75%) of **31**. Yellowish powder. TLC (CHCl₃/MeOH 9 :1): *R*_f 0.37. UV (MeOH): 267 (4.38), 275 (sh, 4.32). ¹H-NMR ((D₆)DMSO): 2.25 (m, 1 H-C(2')); 2.75 (m, 1 H-C(2')); 2.95 (t, OCH₂CH₂CN); 3.32 (t, ArCH₂CH₂O); 3.65 (m, 2 H -C(5')); 3.85 (m, H-C(4')); 4.30 (t, CH₂O)); 4.4 (m, H-C(3')); 4.75 (t, CH₂O); 2.84 (t, OH-C(5')); 5.32 (d, OH-C(3')); 6.32 (t, H-C(1')); 7.65 (d, 2 H m to NO₂); 8.20 (d, 2 H o to NO₂); 8.42 (s, H-C(8)); 10.65 (s, NH-C(2)). Anal. calc. for C₂₂H₂₃N₇O₈ (513.5): C 51.46, H 4.51, N 19.10; found: C 51.52, H 4.66, N 18.66.

24. N²-[(2-Cyanoethoxy)carbony]]-2'-deoxy-5'-O-(4,4'-dimethoxytrityl)-O⁶-[2-(4-nitrophenyl)ethyl]guanosine (**32**). Compound **31** (217 mg, 0.41 mmol) was co-evaporated twice with dry pyridine (2 × 2.5 ml) and then dissolved in a mixture of pyridine (0.5 ml) and CH₂Cl₂ (1.5 ml). Dimethoxytrityl chloride (172 mg, 0.51 mmol) was added and the soln. stirred for 2 h at r.t. After addition of MeOH (0.5 ml), the mixture was evaporated and the residue redissolved in CH₂Cl₂ (10 ml). The soln. was extracted with sat. NaHCO₃ soln. (2 × 5 ml), the org. phase evaporated and co-evaporated with toluene (2 × 5 ml), MeOH (2 × 5 ml), and CH₂Cl₂ (2 × 5 ml), and the residue purified by FC (silica gel (8 g), CH₂Cl₂ (600 ml)): 278 mg (81%) of **32**. Yellowish solid foam. TLC (CHCl₃/MeOH 9:1): R_t 0.55. UV (MeOH): 269 (4.41), 277 (sh, 4.34). ¹H-NMR ((D₆)DMSO): 2.35 (*m*, 1 H – C(2')); 2.90 (*m*, 1 H – C(2')); 2.95 (*t*, OCH₂CH₂CN); 3.15 (*m*, 2 H – C(5')); 3.30 (*t*, ArCH₂CH₂O); 5.3 (*d*, OH – C(3')); 6.35 (*t*, H – C(4')); 6.75 (*m*, 4 H *o* to MeO); 7.15 – 7.3 (*m*, 9 arom. H); 7.65 (*d*, 2 H *m* to No₂); 8.18 (*d*, 2 H *o* to NO₂); 8.3 (*s*, H – C(8)); 10.48 (*s*, NH – C(2)). Anal. calc. for C₄₃H₄₁N₇O₁₀ (815.8): C 63.31, H 5.07, N 12.02; found: C 63.18, H 5.09, N 11.99.

25. N²-*[*(2-*Cyanoethoxy*)*carbonyl]*-2'-*deoxy*-O⁶-[2-(*phenylsulfonyl*)*ethyl]guanosine* (**36**). After co-evaporation of **35** (0.25 g, 0.57 mmol) in dry pyridine (3×2 ml), the residue was dissolved in a mixture of dry pyridine (2 ml) and CH₂Cl₂ (2 ml). Then Me₃SiCl (0.385 ml, 3.08 mmol) was added and stirred for 20 min to give a colorless precipitate of pyridinium chloride. To this suspension, **5** (0.115 g, 0.86 mmol) in CH₂Cl₂ (1 ml) was added, then the mixture stirred for 6 h, the reaction quenched by the addition of MeOH (15 ml), and the mixture evaporated after stirring for 20 min. The residue was treated with H₂O (20 ml) and AcOEt (20 ml), the

aq. phase extracted with AcOEt (3×20 ml), the combined org. phase evaporated and co-evaporated with toluene (2×10 ml), MeOH (2×20 ml), and CH₂Cl₂ (2×20 ml), and the residue purified by FC (silica gel (5 g) 0–5% MeOH in CH₂Cl₂ (700 ml)): 0.26 g (85%) of **36**. Colorless foam. TLC (CHCl₃/MeOH 9 : 1): R_t 0.32. UV (MeOH): 265 (4.15), 277 (sh, 4.0). ¹H-NMR ((D₆)DMSO): 2.30 (*m*, 1 H–C(2')); 2.70 (*m*, 1 H–C(2')); 2.95 (*t*, OCH₂CH₂CN); 3.55 (*m*, 2 H–C(5')); 3.85 (*m*, H–C(4')); 4.15 (*t*, SO₂CH₂CH₂O); 4.30 (*t*, OCH₂CH₂CN); 4.40 (*m*, H–C(3')); 4.72 (*t*, SO₂CH₂CH₂O); 4.90 (*t*, OH–C(5')); 5.31 (*d*, OH–C(3')); 6.28 (*t*, H–C(1')); 7.45 – 7.60 (*m*, 2 H *m* and 1 H *p* to SO₂); 7.85 (*m*, 2 H *o* to SO₂); 8.45 (*s*, H–C(8)); 10.55 (*s*, NH–C(2)). Anal. calc. for C₂:H₂a_No₈S · 0.5 H₂O (541.5): C 48.80, H 4.28, N 15.52; found: C 48.99, H 4.52, N 15.35.

26. N²-[(2-Cyanoethoxy)carbony]]-2'-deoxy-5'-O-(4,4'-dimethoxytrityl)-O⁶-[2-(phenylsulfonyl)ethyl]guanosine (**37**). After co-evaporation of **36** (0.25 g, 0.47 mmol) in dry pyridine (2 × 2 ml), the residue was dissolved in pyridine (2 ml) and CH₂Cl₂ (1.7 ml). Then dimethoxytrityl chloride (0.192 g, 0.57 mmol) was added and stirred for 50 min at r.t. The reaction was quenched with MeOH (0.5 ml), the mixture evaporated, and the residue redissolved in AcOEt (7.5 ml). The soln. was washed with sat. NaHCO₃ soln. (2 × 5 ml), dried (Na₂SO₄), evaporated, and co-evaporated with toluene (2 × 5 ml), MeOH (2 × 5 ml), and CH₂Cl₂ (2 × 5 ml), and the residue purified by FC (silica-gel (8 g), CH₂Cl₂ (250 ml), then CH₂Cl₂/MeOH 49:1 (200 ml)): 0.29 g (73%) of **37**. Yellowish foam. TLC (CHCl₃/MeOH 9:1): R_t 0.5. UV (MeOH): 267 (4.20), 281 (sh, 3.95). ¹H-NMR ((D₆)DMSO): 2.32 (m, 1 H–C(2')); 2.83 (m, 1 H–C(2')); 2.97 (t, OCH₂CH₂CN); 3.12 (m, 1 H–C(5')); 3.29 (m, 1 H–C(5')); 3.69 (s, 2 MeO); 3.98 (m, H–C(4')); 4.12 (t, SO₂CH₂CH₂O); 4.28 (t, OCH₂CH₂CN); 4.53 (m, H–C(3')); 4.73 (t, SO₂CH₂CH₂O); 5.30 (d, OH–C(3')); 6.30 (t, H–C(1')); 6.75 (m, 4 H o to MeO); 7.10–7.33 (m, 9 arom. H); 7.42–7.60 (m, 2 H m and 1 H p to SO₂); 7.88 (m, 2 H o to SO₂); 8.27 (s, H–C(8)); 10.47 (s, NH–C(2)). Anal. calc. for C₄₃H₄₂N₆O₁₀S · 0.5 H₂O (843.8): C 61.20, H 5.02, N 9.96; found: C 61.17, H 5.05, N 9.85.

27. N⁴-2-[(Cyanoethoxy)carbonyl]-2'-deoxy-5'-O-(4,4'-dimethoxytrityl)cytidine 3'-(2-Cyanoethyl Diisopropylphosphoramidite) (**38**). A soln. of **22** (1 g, 1.59 mmol) in dry CH₂Cl₂ (10 ml) was evaporated and dissolved in CH₂Cl₂ (10 ml). Then 1*H*-tetrazole (54 mg, 0.775 mmol) and 2-cyanoethyl tetraisopropylphosphorodiamidite (980 mg, 3.25 mmol) were added and stirred for 1 h under N₂. After dilution with CH₂Cl₂ (40 ml) and washing with 5% NaHCO₃ soln. (40 ml), the aq. phase was extracted with CH₂Cl₂ (2 × 40 ml), the combined org. phase dried (Na₂SO₄) and evaporated, and the resulting solid purified by FC (silica gel (17 g), toluen/AcOEt 1:1). The product fractions (>150 ml) containing both diastereoisomers were evaporated and co-evaporated with CH₂Cl₂ (3 ×): 1.06 g (83%) of **38**. Solid foam. TLC (CHCl₃/MeOH 9 :1): *R*₁ 0.64, 0.69 (2 diastereoisomers). UV (MeOH): 282 (4.09), 303 (sh, 3.93), 235 (sh, 4.60), 206 (sh, 4.89). ¹H-NMR (CDCl₃): 1.29 (*d*, 2 *Me*₂CH); 2.34 (*m*, 1 H – C(2')); 2.48 (*t*, CH₂CN); 2.67 (*m*, 1 H – C(2')); 2.80 (*m*, 4 H, CH₂O, CH₂CN); 3.39 – 3.71 (*m*, 2 Me₂CH, 2 H – C(5')); 3.80 (*s*, 2 MeO); 4.21 (*m*, H – C(4')); 4.41 (*t*, CH₂O); 4.68 (*m*, H – C(3')); 6.27 (*t*, H – C(1')); 6.85 (*m*, 4 H *o* to MeO); 7.23 –7.45 (*m*, 7 arom. H, H – C(5), H – C(6)); 8.35 (*s*, NH – C(4)). ³¹P-NMR (CDCl₃): 149.96; 149.45. Anal. calc. for C₄₃H₅₁N₆O₉P (826.9): C 62.46, H 6.22, N 10.16; found: C 61.86, H 6.79, N 10.20.

28. N⁶-[(2-Cyanoethoxy)carbonyl]-2'-deoxy-5'-O-(4,4'-dimethoxytrityl)adenosine 3'-(2-Cyanoethyl Diisopropylphosphoramidite) (**39**). A soln. of **23** (1.5 g, 2.3 mmol) in CH₂Cl₂ (10 ml) was evaporated and the residue dissolved in CH₂Cl₂ (12 ml). Then 1*H*-tetrazole (80.7 mg, 1.15 mmol) and 2-cyanoethyl tetraisopropylphosphorodiamidite (1.38 g, 4.58 mmol) were added and stirred under N₂ at r.t. for 1 h. The mixture was diluted with CH₂Cl₂ (50 ml) and washed with 5% NaHCO₃ soln. (50 ml), the aq. phase extracted with CH₂Cl₂ (2 × 50 ml), the combined org. phase dried (Na₂SO₄) and evaporated, and the residue purified by FC (silica gel (30 g), toluene/AcOEt 2 :3 (600 ml)). The combined fractions of both diastereoisomers were evaporated and co-evaporated with CH₂Cl₂: 1.70 g (87%) of **39**. Colorless foam. TLC (CHCl₃/MeOH 25 :1): *R*₁ 0.16, 0.19. UV (MeOH): 267 (4.35), 276 (4.22). ¹H-NMR (CDCl₃): 1.20 (*d*, 2 *M*₂CH); 2.47 (*t*, CH₂CN); 2.62 (*t*, CH₂CN); 2.81 (*t*, CH₂O); 2.60 – 2.95 (*m*, 2 H – C(2')); 3.30 – 3.80 (*m*, 2 Me₂CH, 2 H – C(5')); 3.78 (*s*, 2 MeO); 4.32 (*m*, 4 – C(4')); 4.47 (*t*, CH₂O); 4.80 (*m*, H – C(3')); 6.48 (*t*, H – C(1')); 6.78 (*d*, 4 H *o* to MeO); 7.15 – 7.45 (*m*, 9 arom. H); 8.19 (*s*, H – C(8)); 8.38 (*s*, H – C(2)); 8.71 (*s*, NH – C(6)). ³¹P-NMR (CDCl₃): 149.544; 149.420. Anal. calc. for C_uH₃N₈O₈P (850.9); C 62.11, H 6.04, N 13.17; found: C 62.05, H 6.28, N 12.44.

29. N²-[(2-Cyanoethoxy)carbonyl]-2'-deoxy-5'-O-(4,4'-dimethoxytrityl)-O⁶-[2-(4-nitrophenyl)ethyl]guanosine 3'-(2-Cyanoethyl Diisopropylphosphoramidite) (**40**). A soln. of **32** (0.80 g, 0.98 mmol) in CH₂Cl₂ (3 ml) was evaporated and the residue dissolved in CH₂Cl₂ (5 ml). Then, 1*H*-tetrazole (34.5 mg, 0.49 mmol) and 2cyanoethyl tetraisopropylphosphorodiamidite (591 mg, 1.95 mmol) were added. After stirring at r.t. for 1 h, the soln. was diluted with CH₂Cl₂ (20 ml) and washed with 5% NaHCO₃ soln. (20 ml). The aq. phase was extracted with CH₂Cl₂ (2 × 20 ml), the combined org. phase dried (Na₂SO₄) and evaporated, and the resulting residue purified by FC (silica gel (18 g), toluene/AcOEt 2 : 3 (400 ml)): 0.836 g (84%) of **40**. Yellowish solid foam. TLC (toluene/AcOEt 1 : 1): R_f 0.28, 0.40. UV (MeOH): 269 (4.38), 236 (sh, 4.42, 206 (sh, 4.83). ¹H-NMR (CDCl₃): 1.17 (d, 2 Me_2 CH); 2.60–2.95 (m, 2 H–C(2')); 2.64 (t, CH₂CN); 2.76 (t, CH₂CN); 3.33 (t, ArCH₂, CH₂O); 3.50–3.90 (m, 2 Me₂CH, 2 H–C(5')); 3.79 (s, 2 MeO); 4.38 (m, H–C(4')); 4.39 (t, CH₂O); 4.84 (t, CH₂O–C(6), H–C(3')); 6.38 (t, H–C(1')); 6.77 (d, 4 H o to MeO); 7.15–7.40 (m, 9 arom. H); 7.55 (d, 2 H m to NO₂); 8.18 (d, 2 H o to NO₂); 7.99 (s, H–C(8)). ³¹P-NMR (CDCl₃): 149.45; 149.31. Anal. calc. for C₅₇H₅₈N₉O₁₁P (1016.1): C 61.47, H 5.75, N 12.41; found: C 61.05, H 6.44, N 11.92.

30. *Kinetics*. An exact amount of nucleoside was weighed into a screw-cap glass vial (5 ml) and mixed with a 15-fold molar excess of 0.5M DBU/MeCN. This soln. was stirred at $22-23^{\circ}$. Samples were taken with a 25-µl *Eppendorf* pipette and quenched by the addition to 0.25M AcOH (0.5 ml). The samples were stored in a refrigerator until the measurement was performed. The nucleosides 2'-deoxy-5'-O-(4,4'-dimethoxytrityl)- N^4 -{[2-(4-nitrophenyl]cytidine (C^{npece}), 2'-deoxy-5'-O-(4,4'-dimethoxytrityl)- N^6 -[[2-(4-nitrophenyl]cytidine (A^{npecc}) and 2'-deoxy-5'-O-(4,4'-dimethoxytrityl) - N^6 -[2-(4-nitrophenyl]cytidine (A^{npecc}) and 2'-deoxy-5'-O-(4,4'-dimethoxytrityl) - N^6 -[2-(4-nitrophenyl)ethoxy]carbonyl]guanosine ($G^{npenpeoc}$) used for comparison with the ce/ceoc-substituted nucleosides were prepared as described in [2].

REFERENCES

- [1] T. Reiner, E. Kvasyuk, W. Pfleiderer, Helv. Chim. Acta 2000, 83, 3053.
- [2] F. Himmelsbach, B. S. Schulz, T. Trichtinger, R. Charubala, W. Pfleiderer, Tetrahedron 1984, 40, 59.
- [3] E. Uhlmann, W. Pfleiderer, Helv. Chim. Acta 1981, 64, 1688.
- [4] M. Ichiba, R. Charubala, R. S. Varma, W. Pfleiderer, Helv. Chim. Acta 1986, 69, 1768.
- [5] L. J. McBride, M. M. Caruthers, Tetrahedron Lett. 1983, 24, 245.
- [6] A. H. Beiter, W. Pfleiderer, Tetrahedron Lett. 1984, 25, 1975.
- [7] G. M. Tener, J. Am. Chem. Soc. 1961, 83, 159.
- [8] N. D. Sinha, J. Bierat, H. Köster, Tetrahedron Lett. 1983, 24, 5843.
- [9] C. Merk, Diploma Thesis, University of Konstanz, 1994.
- [10] W. Pfleiderer, C. Merk, German Pat. DE 97-19745708 A 1, 30.4.1998.
- [11] M. Manoharan, T. P. Prakash, I. Barber-Peocv'h, B. Bhat, G. Vasquez, B. S. Ross, P. D. Cook, J. Org. Chem. 1999, 64, 6468.
- [12] V. I. Kondratenko, I. G. Khaskin, J. Org. Chem. U.S.S.R. 1970, 6, 2231.
- [13] G. S. Ti, B. L. Gaffney, R. A. Jones, J. Am. Chem. Soc. 1982, 104, 1316.
- [14] B. L. Gaffney, L. A. Marky, R. A. Jones, Tetrahedron 1984, 40, 3.
- [15] X. Gao, B. L. Gaffney, S. Hadden, R. A. Jones, J. Org. Chem. 1986, 51, 755.
- [16] I. Kieper, T. Schmidt, B. Fera, H. Rüterjans, Nucleosides Nucleotides 1988, 7, 821.
- [17] R. T. Pon, N. Usman, M. H. Damha, K. K. Ogilvie, Nucleic Acids Res. 1986, 14, 6453.

Received July 21, 2000